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1. INTRODUCTION

In numerical analysis often the following problem arises. Compute an
approximation of the value f(x) at a prescribed point v </ where for the
real function f defined on the compact interval 1 - [«, p] only the values
f(x;) are assumed to be known, x, ..., v, ¢ [. This problem usually will be
solved by choosing a Cebyéev system (/, ...., f,,) of real functions defined on /
and computing the value Hf(x) of the unique linear combination Hf of
fo 5. [ that interpolates f at the knots x, ... x, . I (fy ..... f,.) is a complete
Cebysev system on I (i.e., fork - - Oo... i1, (fy ... £,) is a CebySev system on /)
then Hf(x) can be computed recursively either using generalized divided
differences and Newton’s interpolation formula [4] or using a generalization
of the Neville-Aitken algorithm [5]. Naturally the question arises: How
good is this approximation? For all complete Cebysev systems (/; ..... /) of
continuous functions the interpolation or extrapolation error can be estimated
in terms of the modulus of continuity of the function fJf, and in terms of the
Lebesgue function of an interpolation operator naturally associated with £/,
which can itself be estimated in terms of the moduli of continuity of the
functions f;/fy (¢ = 1,...,n) and the “Ceby§ev moduli” of the subsystems

(fo 5es £3)-

2. ERROR BOUNDS FOR EXTRAPOLATION OPERATORS

The following theorem is an extension of a result of Brall and Ginttner 1]
concerning interpolation of continuous functions by algebraic polynomials
to the more general case of interpolation by functions which form a complete

* Presented at the Symposium on Approximation Theory, Austin, Texas, January 18-21,
1976.
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EXTRAPOLATION OPERATORS 329

oriented Cebysev system. Following Zielke [8], a complete Cebysev system
(/o ,..» J) on I will be called oriented if, for & = 0,..., n,

V(e = det f4(1,)

has a constant sign for all ¢, ,..., 7, € L with ¢, < --+ < 1,,. Clearly, this will be
fulfilled if £ ,..., £, are real continuous functions on 1.

THEOREM 1. Let fy be the constant 1 and let (fy, i ..., f,) be a complete
oriented Cebysev system on I. Let (xy,..., x,) € [ be a system of simple
knots ordered in increasing order, and for an arbitrary real function f defined
on I let Hf denote the unique linear combination of 1, f, ,.... f, interpolating f
at Xg yeeoy Xn . Then for all x € 1,

FHf(x) — f0)] < 3Ax) + 1] w(f: ),

where 4 1= max{x, — d, X; — Xg , Xa — Xy seues X — Xn_1, b — X,.}, w is the
modulus of continuity of the function fon I, and X is the Lebesgue function of H:

Mxyi= 3 1L, L) i= VG e e VG000,
i=0

Proof. Following Brall and Giinttner [!] it is sufficient to show that
h(x) = Z,LO I.(x) changes sign for x > x, precisely at x4 ,..., x, and
that Ji(x) := 1 — h(x) changes sign for x < x,,, precisely at x,,..., X;
(k =0,...,n —1). But, observing that #,,h,espan{l,f,...., [, \span{l,
SiseesJoay for bk =0,...,n — 1 (the divided differences of these functions
with respect to the knots x, ,..., x, and the system (1, f; ...., f;,) are different
from zero, as can be seen from the recurrence relation (1) below) this follows
from a result of Zielke concerning the oscillation properties of such functions
[8, Lemma 3, p. 174].

Remarks. 1. Tt is an open question whether Theorem 1 holds for
arbitrary CebySev systems (1, f; ..., f,). BraB and Giinttner have shown
that Theorem 1 also holds for interpolation by trigonometric polynomials
at the knots subdividing [0, 27] into congruent intervals.

2. The observation of O. Kis that the estimate in the classical cases of
interpolation cannot be improved remains valid in the more general case.
As noted by BraB and Giinttner, this is an immediate consequence of the
facts w(f; 4) < 20 f1i (| - | == sup-norm) and | H — 1| =|Hl +1 (I =
identity); the last equality was proved by Cheney and Price [2] in a much
more general setting.
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330 G. MUHLBACH
3. ESTIMATES OF THE LEBESGUE FUNCTIONS

The Lebesgue function A(x) can be estimated by a repeated use of
Theorem 1. The following definition will be needed.

DEFINITION.  Letr [y onon fa) be a complete Cebyser system on 1. For
k --0,1,....n, the function

k 0: 0. 0 >pyd): ] f(v) v S
/ < . -
k-1 (0. 27;(—1} 38 > pidd) = infi{xg R A P T I
N O A b.
mjg {x, N ot

NN

will be referred to as the (-:L’b'lh\vl’l,' modulus of the subsvstem (f, ... 1.y on .
Here

(g b Fl o VG L Cr )
denotes the divided difference of [ with respect to the CebysSer system (1), ... iD)
and the simple knots v, ,.... v, .

ExampLE.  For the Cebysev system of the power functions (1. v, 2. x™)
it is well known that p,(8) k6. for k = I.

Remark. For an extended complete Cebysev system (/g .....f,) (n - 1)
on /- fa, b]. with f"(a) 0. p - O.l...i f:i 1.2...n one has
[3. Theorem 1.2, p. 379]:

fo(x) welx),

(XY = rg(x) ’A wilty) dty

ot

F(X) = avg(x) ' ' wi(fy) ‘

L

1 Al .
wolty) | | ) dty ey

1 !

where w; € C"~[q, b] are strictly positive functions. It is possible to estimate
the Cebysev moduli of the subsystems ( £, /; ..... /;) on f from below [7]. If,
fori = 0,..., n, m; 1= min{w,(x): x € I}, M, : — max{w(x): x € I}, then for all
permissible 8 > 0 and k = ..., n,

pul®) - dmy T (20)
I o ke M Al,
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and
E—1

- omy, m,; ket

For 6 — 0 the first estimate cannot, in general, be improved: It is easily seen
that, for the system of power functions, equality holds.

The divided differences can be computed and thus also estimated by the
recurrence [6]:

(]) [xo yeeos X ‘f] . [-Xl seres Xy 'f] - [x() ooy Xpq ‘j]

N [xl seeey X !fn] - [XO ey Xy lfn] '
Tt is easily seen by induction that if min,<;c.(x; — x;_4) = & > 0, then

M
H:'ljo pz(s)

2 MXo s Xn  fI <

where M := sup{| f(x)|: i = 0,...,n}. In general this estimate cannot be
improved, for the system of power functions, for equidistant knots, and with
f(x;) = (—1)* M, there is equality in (2).

THeOREM 2. Let (1,f,,....f.) (n = 1) be a complete oriented Cebysev
system on I = [a, b] and let p,, be the CebySev moduli of its subsystems. Let
(Xg oeees X)) € I be a system of simple knots ordered in increasing order. Then
forall xel

1 < - 2ih1w(f;' ; A)
ﬂm+nwﬂﬁ*7ﬁm®4

where § 1= miny¢;<,(x; — x;_,) and 4 and A are defined in Theorem 1.

Proof. For a fixed system of knots x, < x; < =+ < x,,, define a function

(Pi € Span{],ﬂ ""sf’!l}
by

@ix;) 1= sign li(x) (j = 0,..., n), for x, 4, <x<x;(i=1,.,n)

and let ¢, and ¢,,, be defined likewise for ¢ <X x << x, or x, < x < b,
respectively. If (x,, ..., x, ) is any permutation of (x, ,..., x,), then for x €I
different from each knot, we have, by Newton’s interpolation formula,
with 7 suitably chosen:

M) = ¥ L] = Hopl)

= (pi(xvo) + Z [xvo yeers ka i (Pz] ' {fk(x) - Hv0.vk_1.f;c(x)}
k=1
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where /. ./ is the unique linear combination of /; .o fi 4 that inter-
polates to / at the knots X e Xy o Fora given vl distinct from each
knot, choose the first knot x, 1o be the nearest to x among all knots v, ... RN

then choose x, to be the nedre»l knot to v among the remaining knots, and
so on. Summarized, depending on x there can be chosen a permutaticn
(x,, oo ¥ ) of the knots (v, ... x,) such that /\,,“J{‘(.\‘) | and

MY Ay () M

o 1 5 (x) Dy s/, ) [.\‘“ e Ny ,-J
where A, . 1s the Lebesgue function of 1/, .- Here Theorem | is applied
to f, and to d smaller interval contained in I such that the maximal distance
of adjacent knots among v, .....x,.  can be replaced by 4 during our choice
of these knots. An application of estimate (2) to the present case and an
induction argument yield the estimate stated in Theorem 2.

Both Theorems | and 2 are easily extended to complete CebySev systems
(/o ... /) where the first function f, is not constant by considering the
system (1. fy/fy .o £.fy)- Using the same notation as above with the CebySev
moduli now defined with respect to (/, ..... f,), it is easily seen that the fol-
lowing resulft holds.

COROLLARY.  If ([ veens 1) s a complete oriented Cebyier svstem on .
then for all x e 1,

s Mt >l A
Hi(x) R o fify 1) i 5)
) A e DT
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